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Abstract

Engineering problems commonly require functional
outputs of computational fluid dynamics (CFD) sim-
ulations with specified accuracy. These simulations
are performed with limited computational resources.
Computable error estimates offer the possibility of
quantifying accuracy on a given mesh and predicting
a fine grid functional on a coarser mesh. Such an es-
timate can be computed by solving the flow equations
and the associated adjoint problem for the functional
of interest. An adjoint-based error correction proce-
dure is demonstrated for transonic inviscid and sub-
sonic laminar and turbulent flow. A mesh adaptation
procedure is formulated to target uncertainty in the
corrected functional and terminate when error remain-
ing in the calculation is less than a user-specified error
tolerance. This adaptation scheme is shown to yield
anisotropic meshes with corrected functionals that are
more accurate for a given number of grid points then
isotropic adapted and uniformly refined grids.

Introduction

Engineering problems commonly require computa-
tional fluid dynamics (CFD) solutions with functional
outputs of specified accuracy. The computational re-
sources available for these solutions are limited in prac-
tice, and errors in solutions and outputs are unknown.
CFD solutions may be computed with an unnecessar-
ily large number of grid points (and associated high
cost) to ensure that the outputs are within a required
accuracy. A method which estimates the error present
in a computed functional offers the possibility to avoid
the use of overly refined grids in order to guarantee ac-
curacy.

Unstructured grid technology promises easier initial
grid generation for novel complex three-dimensional
(3D) configurations compared with structured grid
techniques. The use of unstructured grid technology
for CFD simulations allows more freedom in adapting
the discretization of the meshes to improve the fidelity
of the simulation. Many previous efforts attempted to
tailor the discretizations of unstructured meshes to in-
crease solution accuracy while reducing computational
cost.! 8
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Most of these adaptive methods focus on modifying
discretizations to reduce local equation errors. These
local errors are not guaranteed to directly impact er-
ror in global output functions. These methods, often
referred to as feature-based adaptation, focus on re-
solving discontinuities or strong gradients in the flow
field. Unfortunately, flow features (e.g., shocks) can
be in the incorrect location due to errors elsewhere
in the flow field. Also, resolving the flow in a location
with large local error may have a minimal effect on the
output function (e.g., a downstream shock). However,
locations with small local errors (e.g., along a stagna-
tion streamline) may have a large effect on forces.

If the flow equations are linearized about the exist-
ing primal solution, a linear dual problem can yield a
direct measure of the impact of local primal (flow equa-
tion) residual on a selected functional output. The
combination of the primal and dual problems can also
yield a correction to a specified functional on a given
mesh. There are many examples of these techniques in
the finite element communities.” 19 Pierce and Giles!!
applied these methods to finite-volume discretizations.
Venditti and Darmofal'? !> demonstrated these meth-
ods for compressible two-dimensional (2D) inviscid
and viscous flow solutions. Miiller and Giles'S also
presented results for a similar approach. Park!” ap-
plied the methods of Venditti and Darmofal'® to 3D
inviscid problems.

Adaptation can reduce error in a output function
by refining a discretization in locations where the lo-
cal equation error weighted with the dual solution is
large.'® This methodology targets refinement where it
will have the most impact on reducing the error in an
output functional. An alternative method is to refine
the mesh to reduce uncertainty in the dual correction
term because this correction can be computed to high
accuracy.'4 17

Adaptation to reduce the error prediction uncer-
tainty is a robust and effective method for tuning a
discretization to efficiently calculate a specific func-
tional.1¥"1® Park!” demonstrated 3D isotropic adap-
tation coupled to a computer-aided design (CAD) de-
scription of the model for transonic, subsonic, and in-
compressible inviscid flow. The current study focuses
on defining the requirements for extending Park’s
methodology to anisotropic adaptation for turbulent
flow.
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The adjoint variable approach (solution of the dual
problem) is an efficient method for computing deriva-
tives of a functional of interest for gradient-based
design methods. Some examples of discrete adjoint de-
sign methods are given in Nielsen and Anderson.!8:1?
The discrete dual problem for adjoint variables can
be expensive (on the order of the primal problem).
However, the adjoint solution is already available for
use during the aerodynamic design process, so it could
be employed for simultaneous design, error prediction,
and grid adaptation.

The combination of adjoint-based grid adapta-
tion and design techniques can yield an attractive
tool for the aerodynamic design of new configura-
tions. Adjoint-based error prediction and adapta-
tion can yield meshes with fewer points than tradi-
tional feature-based schemes with computable error
estimates on output functions. Design processes re-
quire analysis and derivative evaluation tools that
operate with minimal human interaction. Robust, au-
tomatic adaptation techniques enable the increased
use of nonlinear flow calculations in larger multidisci-
plinary design frameworks. These new techniques will
enable efficient analysis for existing configurations and
expanded exploration of design spaces for new config-
urations.

This work is part of the Fast Adaptive Aerospace
Tools?® (FAAST) program. The goal of the FAAST
program is to improve the robustness of high-fidelity
CFD analysis and reduce total time for analysis and
design. This study describes ongoing work toward er-
ror correction, grid adaptation for function outputs,
and CAD-to-grid methods.

Flow Equations

The Fully Unstructured Navier-Stokes Three-
Dimensional?! 23" (FUN3D) suite of codes is employed
in this study. The compressible flow solver employs
an unstructured finite-volume tetrahedral method for
conserved variables, Q, i.e.,

Q= [p pu pv pw E]" (1)

where p is density, u, v, and w are velocity, and F is to-
tal energy per unit volume. The node-based variables
Q are computed by driving the flow equation resid-
ual R to steady-state with an implicit point-iterative
method. FUN3D is able to solve incompressible,
Euler, and Reynolds-averaged Navier-Stokes (RANS)
flow equations, either tightly or loosely coupled to
the Spalart-Allmaras®® (S-A) one-equation turbulence
model. When the S-A model is included, the turbu-
lence model quantity v is included in Q. The turbulent
viscosity i is also computed and stored to reduce exe-
cution time. The present study employs the Euler and
RANS equations coupled to the S-A turbulence model.

Thttp://fun3d.larc.nasa.gov

The solution of Q allows the calculation of integral
quantities f (e.g., lift, drag). The skin friction compo-
nent of the forces can be computed with element- or
flux-based methods (these are the nonconservative and
conservative methods of Venditti,'* 15 respectively).

To speed execution, the global problem domain is
decomposed into multiple subdomains and the flow
and the adjoint problems are solved with a parallel
execution scheme, which communicates via the mes-
sage passing interface (MPI) standard. The FUN3D
suite of codes is being extended to the High Energy
Flow Solver Synthesis?® (HEFSS) modular framework
of FORTRAN 90 libraries.

Adjoint Equations

After the flow solution is known, the discrete ad-
joint equations® 22:23 are solved to complete the dual
problem. The first step is to linearize the flow equa-
tion residual (including the turbulence model) R and
output function f with respect to the flow solution
Q. After this linearization, an adjoint variable X is
solved for each of the flow equations and the turbu-
lence model.

An abbreviated derivation, adapted from Taylor et
al.,?® is given below. The chain rule for the linearized
output function is

of _(or\"oR
0Q \0R/) 0Q
The adjoint variable A is defined as the effect of the
flow residual on the output function:

o _
oR

(2)

pY (3)

A set of linear equations is solved to find A:

oR\"\(0f)” "
0Q - \9Q
After the flow solution is known, this set of linear equa-
tions is solved with a point-iterative time-marching
method.2729  An earlier implementation of the ad-

joint solver used GMRES.?° See Refs. 18,19, and 23
for details.

Error Correction

The error prediction and correction scheme is taken
from Refs. 13-15. With a solution on a mesh of reason-
able size QU, it is desirable to predict the value of an
output function evaluated with a solution on a much
finer mesh f(Q*). This prediction can be computed
without the solution on this finer mesh when the ad-
joint solution on this reasonable mesh \° is used. The
full derivation of the error correction term is available
in Refs. 11,13,14, and 16. An abbreviated derivation is
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presented by expanding the Taylor series about f(Q°),
i.e.,

. o\ rior
FQ) = Q%) + | 755 (R(Q") —R(Q")) + ...
OR |,
(5)
Employing Eq. (3) and assuming that the residual
on the much finer mesh is zero yields an improved es-

timate for the functional of interest foq:

of
OR

=\’ (6)
0
R(Q") =0 (7)
FQ) & fese = F(Q") = (\)TR(Q”) (8)
To improve the prediction of the functional f.., Q°
and AY can be interpolated to an embedded mesh. In-
terpolation is performed in two ways for this study: a
linear interpolation (Q%,A") and a higher order inter-
polation (Q¥ A\H). Details of this interpolation and
the construction of this embedded mesh are in the
section “Error Correction and Adaptation Process.”
Substituting the higher order interpolant into Eq. (8)
yields the higher order functional estimate fZ,:

2= 1Q") - WHTR(QM) (9)

Adaptation Parameter

The adaptation parameter, also from Ref. 13, is in-
tended to specify a grid spacing modification to reduce
the uncertainty in the computed error prediction. The
grid is not modified to directly reduce the computed
error prediction (as in Ref. 16) because an accurate
estimate for the functional including this error term
can be computed with Eq. (8). Instead, targeting
the uncertainty in this computed quantity is more ef-
fective and improves the robustness of the adaptive
process. The error correction (Eq. (8)) including the
uncertainty in the dual solution is

£Q%) — f(Q7) = (W) TR(Q%) + (A" = X*)TR(Q")
(10)
The uncertainty in the computed error correction is

fest = F(Q7) = (A = A°)TR(Q”) (11)

The relation of the primal and dual problems!!:!3
yields another expression for the error correction un-

certainty
A =A)TRQY) =Ra(A)(Q -Q)T (12)
where R (A) is the residual of the dual problem:
T T
o= (Go) () 0
A computable term is found by using the interpolation
error of A to replace (A* — A?) and the interpolation

error of Q to replace (Q* — QY). The higher order
interpolate for Q° and A is employed for the residual
calculations to improve prediction in place of the lin-
ear interpolate in Ref. 13. The interpolation error is
expressed as the difference in the high-order and linear
interpolated values:

(A =20 ~ (A — L) (14)
Q" -Q°)~(Q"-Q" (15)

The average of the absolute values of the two uncer-
tainty terms in Eq. (12) yields the adaptation intensity

I, which is computed for each equation on each embed-
ded node:

[AT = ANTRQ)| + [Ra(A)(QT — Q")
2

I=
(16)
The intensity I is therefore the average of the absolute
values of two terms. The first term is a dual solution
interpolation error weighted with the primal residual.
The second term is the dual problem residual weighted
with a primal solution interpolation error. This form
of the adaptation intensity (which includes weighed
interpolation errors) focuses on the nonlinear contribu-
tions to the function error, which increases robustness
of the adaptation method.

Error Correction and Adaptation
Process

The error correction process begins with an initial
tetrahedral mesh, which can come from any mesh gen-
eration system. The state variables are computed as
the nonlinear solution to the flow equations on the ini-
tial mesh. The adjoint variables are then computed
with the linearized flow equations at the flow solution.
These flow and adjoint solution procedures employ a
parallel execution scheme. Then the global problem
domain is reconstructed to facilitate the creation of
a finer, embedded grid with interpolated primal and
dual solutions.

Embedded Mesh

To compute the error prediction and the adaptation
parameter, a globally embedded or h-refined mesh is
created. To construct the embedded mesh, a new node
(represented by an open circle in Fig.1) is inserted at
the midpoint of each existing edge (solid line) that
connects existing nodes (closed circles); see Fig. 1(a)
and 1(b). Each existing tetrahedron is subdivided to
reconnect these new nodes with eight interior tetra-
hedra. (Each of the existing boundary faces is also
divided into four triangles.)

The four new tetrahedra constructed at the corners
of the original tetrahedron have the same shape as the
original but are smaller in size. The construction of the
four corner tetrahedra leaves an interior volume with
eight faces, which is subdivided into four tetrahedra.
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a) Original tetrahedron. b) Embedded tetrahedra.

Fig. 1 Tetrahedron embedding process.

The four interior tetrahedra have three unique config-
urations. The configuration with the lowest maximum
dihedral angle is selected.

The new nodes are placed at the midpoints of edges
during the mesh embedding process. The embedded
nodes on the boundaries of the mesh may no longer re-
main on the original surface definition of the model. In
Refs. 13 and 14, the newly created embedded bound-
ary nodes are repositioned to coincide with the domain
boundary and adjacent nodes are smoothed to main-
tain quality and integrity of the mesh. In the current
approach, newly inserted boundary nodes are only pro-
jected to the domain boundary for the cylinder case
(shown later in the “Results” section). All boundary
nodes are projected during grid adaptation.

Embedding High Aspect-Ratio Cells

Performing global embedding on a 2D triangular
mesh will yield smaller cells with shape measures iden-
tical to their parent cells. In 3D, global embedding
of high aspect-ratio tetrahedra results in nearly col-
lapsed sliver cells (excluding the four corner tetrahe-
dra). However, if the high aspect ratio tetrahedra are
arranged in the semistructured form of prismatic ele-
ments divided into three tetrahedra, the original shape
measures can be maintained.

To regain the original shape measures, 4-for-4 edge
swapping®! is only performed on edges connecting
newly created nodes. The subset of edges selected for
swapping are shown as dashed lines in Fig. 1(b). The
edge swapping technique chooses alternative cell con-
nectivities that have a lower maximum dihedral angle.
After this limited edge swapping, the mesh is equiva-
lent to reconstructing the prismatic elements, refining
the prisms, and dividing the embedded prismatic ele-
ments into tetrahedra. Advancing layer meshers® 3235
often employ the semistructured form of prismatic el-
ements divided in to three tetrahedra for boundary
layer elements.

Interpolation Preprocessing for Adjoint on Strong
Boundaries

The primal equations change character on bound-
aries with strong enforcement of Dirichlet data. In-
stead of solving for the conservation of momentum
and energy, the velocity and temperature are explicitly

set for these boundary nodes. Therefore, the adjoint
solution also changes character.'®1%27 Enforcement
of the continuity equation remains the same on these
strong boundaries as in the interior. The interpola-
tion of the adjoint solution to the embedded mesh
should not be performed for the first layer of interior
embedded nodes near strong boundaries because this
interpolation will be between nodes with different dual
properties. If the original mesh boundary adjoint so-
lution is replaced with values extrapolated from the
interior of the domain, the solution will be consistent
between strong boundaries and the interior. Interpo-
lation can then be performed between the consistent
interior and extrapolated boundary adjoint solution.

To perform this extrapolation, least-squares gradi-
ents?! are computed at the existing nodes by using the
existing mesh and adjoint solution. The edges incident
to strong boundary nodes and the strong boundary
nodes themselves are excluded from this gradient cal-
culation. The existing boundary adjoint solution is
discarded and replaced with values extrapolated from
the interior. This extrapolation is performed along
each edge connecting the interior nodes to the bound-
ary nodes. The extrapolated value at the boundary is
computed with the interior value of the adjoint and its
gradient.

If boundary nodes receive more than one edge con-
tribution from the interior, those contributions are
averaged. The original mesh adjoint solution is then
consistent between the extrapolated strong boundaries
and interior, so the same interpolation technique for
problems with weak boundary conditions is applied.
After the adjoint is interpolated to the embedded
mesh, it is postprocessed to estimate the boundary ad-
joint for the error prediction calculation. See Ref. 14
for details.

Interpolation Techniques

Each of the solution and adjoint variables is inter-
polated in two ways to form the linear and the higher
order reconstruction for the new nodes on the em-
bedded mesh. The higher order reconstruction of the
solution for the new nodes requires the computation
of least-squares gradients?! at the existing nodes by
using the existing mesh and solution. Previous work!”
used a compact edge-based scheme to compute the lin-
ear and higher order reconstruction. The current work
employs the same scheme for linear reconstruction;
however, an improved element-based scheme, similar
to Ref. 14, is used for the higher order reconstruction.

The higher order reconstruction begins with a
quadratic fit of the solution over each coarse grid
element. The quadratic function has ten terms: a
constant, three first derivatives, three second deriva-
tives, and three cross derivatives. The quadratic func-
tion is fit to the coarse grid value and its derivatives
at the nodes of the coarse grid element. This fit
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yields a 10x16 system of equations that is solved in a
least-squares sense with LU decomposition to find the
quadratic function terms. The least-squares 10x16 sys-
tem is ill-conditioned for highly skewed elements. Ven-
ditti'* employ singular value decomposition to handle
highly stretched elements. A simple LU is sufficient to
invert the equations for the meshes examined in this
study.

The quadratic fit is evaluated at each new and exist-
ing node. Contributions from all surrounding elements
are averaged at these node locations. At the comple-
tion of the grid embedding and interpolation step, the
linear and higher order interpolated solutions to the
primal and dual problems Q¥, AL, Qf, and A are
available to compute the error correction and adapta-
tion criteria.

Error Correction and Adaptation Parameter

Once the new embedded grid is constructed with
Qf and A, it is partitioned to allow parallel calcu-
lation of the functional and residuals. The flow and
the adjoint equations are not iterated or solved on
this embedded grid; instead, the flow state and ad-
joint variables are interpolated from the original mesh.
Therefore, the only computational costs on this larger
embedded grid are function evaluations, flow and ad-
joint residual evaluations, and dot products of vectors.
The higher order error correction term, Eq. (9), is
computed at each node on the embedded mesh and
summed over the entire mesh for all flow equations.
The adaptation intensity, Eq. (16), is also computed
at each embedded mesh node.

To specify the grid adaptation on the original mesh,
the adaptation intensities must be reduced from the
embedded mesh to the original mesh (IY). The new
nodes on the embedded mesh all lie on existing edges
of the original mesh (see Fig. 1(b)). Therefore, to con-
struct I°, the original mesh is examined one edge at a
time. One half of the intensity computed at each new
node (which is at the midpoint of an original edge)
is added to each existing node at the endpoints of
the new node’s parent edge. The intensities are also
summed over the equations at this step, resulting in
one intensity value for each original node.

The adaptation parameter, which has been reduced
to the original mesh, is summed to find the global
intensity I, = > I°. The number of nodes in the orig-
inal mesh n and the user-specified error tolerance t are
combined to scale the adaptation intensity; that is,

I
0= 2"y (17)
tt

Previous work!” refined the mesh when I was
greater than unity. An anisotropic adaptation metric
is applied in the current study to improve the adaptive
scheme.

Anisotropic Metric

Venditti and Darmofal'® incorporated the adjoint
adaptation parameter into an anisotropic Hessian-
based framework. This combined approach sets the
anisotropy of mesh elements by using the Mach Hes-
sian, and it scales the element size so that the tightest
spacing is dictated by the adjoint adaptation param-
eter. Hessian-based adaptation® 15:3% is formulated to
equally distribute the interpolation errors for linear el-
ements throughout the mesh.

The Mach Hessian H is symmetric and can be de-
composed into Eigenvalues A and Eigenvectors R; that
is,

a2M  9*M M

Ox? Ozdy  Ozdz

H= | 24 2’M 9°M

- Ox 0y Oy? Bgaz
M M 9

O0x0z Oyoz 022

=RAR'  (18)

A symmetric metric tensor M is employed to de-
scribe a transformation where grid elements are ideal
(isotropic with unit length edges). The matrix M has
the same Eigenvectors as matrix H and absolute value
of the corresponding Eigenvalues:

| A1l

M=R Aa| R'=R[A|R' (19)

|As]

The element spacing h; in the three principle directions
R is given as

2
1 t
(T) R’ (20)
2
1
()
The Jacobian J is employed to map physical space
_ t VN SR A1
x = [z y 2] to a transformed space x' = [z’ ¢ 2]
where a triangle or tetrahedron becomes equilateral
with unit length edges; that is,
x = Jx (21)
The metric tensor M is related to J by
M =J'J (22)
J=[A? R (23)

If a vector x describes an edge in physical space, the
length [ in mapped space is

I =Vx'x (24)

Employing Eq. 21, this expression of length becomes

1 =1/(Ix)" (Ix) (25)
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= Vvx!Mx (26)

Equation (26) is employed by the adaptive node inser-
tion and removal mechanics to compute edge lengths.
Equation (22) is applied to the physical coordinates of
element nodes to map them to the transformed space
before computing shape metrics during edge swapping,
face swapping, and node smoothing.

The adjoint adaptation parameter is incorporated
into the Hessian framework by scaling the three Eigen-
values so that the largest Eigenvalue corresponds to
the adjoint adaptation spacing requirement. The
Eigenvalues and corresponding Eigenvectors are sorted
so that [A1| > |A2] > |A3|. The largest Eigenvalue is
computed with the relationship

A= (};)2 (27)

The specified element length hq, corresponding to the
largest Eigenvalue, is computed with an estimate of
the spacing on the original mesh h° and the adaptation
intensity Eq. (17); that is,

hy = hO (19)* (28)

In previous studies, the original spacing h° was com-
puted with an implied metric. However, in the current
study, h® is estimated by the length of the shortest
edge incident to a node. The implied metric is de-
scribed in Ref. 14,15, and 37. The exponent value of
0.2 is used to under-relax the adaptive procedure.

The Eigenvalue ratios |Az|/|A\1] and |As]/|A1] can
also be increased toward unity to reduce anisotropy of
the mesh. Limits are placed on the minimum Eigen-
value to reduce the maximum element size in the mesh.
The completed anisotropic adaptation metric is em-
ployed to describe the requested grid modifications to
the adaptation mechanics.

CAD-to-Grid Methods

The GridEx?® 39 framework is currently being de-
veloped at NASA Langley Research Center to link
various grid generation and adaptation strategies to
geometry through Computational Analysis Program-
ing Interface?®4! (CAPRI). CAPRI is a CAD vendor-
neutral package that provides a common interface to
many native CAD kernel application programing inter-
faces (API). Interrogating CAD parts with their native
kernel removes the difficulties of translation and asso-
ciated pitfalls.

The isotropic mesh generator used in this study is
the FELISA* mesher. FELISA is a Delaunay mesh
generator with an advancing-front method for insert-
ing nodes. It is used to compute both surface and
volume meshes in this study.

The GridEx application provides various visualiza-
tion tools and allows interactive adjustment of mesh

spacing specifications. It also has a batch mode for
generating meshes without visualization. The underly-
ing GridEx framework facilitates data persistence be-
tween various applications and application instances.
This framework enables meshing research into mesh
adaptation and viscous grid generation.

Adaptation Mechanics

The adaptation mechanics are separated into mul-
tiple modules. These modules are written in C and
wrapped with the Ruby*%43% script language. The C
code was unit tested with the Ruby Test: :Unit pack-
age. The relative ease of testing with this package
enabled test first development.** GNU Autotools*®
are used to configure, build, and install this grid re-
finement package.

The first module inserts or removes nodes of an
existing mesh and locally reconnects tetrahedra and
boundary faces to maintain a valid tessellation. The
second module employs face and edge swapping to im-
prove the mesh quality. The final two modules perform
node smoothing and boundary node projection opera-
tions. These modules are incorporated into a common
framework that stores auxiliary data such as adjacency
of elements and CAD parameterizations and allows
translation between the GridEx framework and inter-
nal data structures.

Node Insertion and Removal

The node insertion and removal module allows for
the local density of the mesh to be modified. Nodes
may be inserted into an element or be created by split-
ting an edge or face. Nodes are removed by edge
collapse.

An adaptation sweep is performed by iterating over
nodes in the mesh. For each node, the longest
and shortest incident edge in the anisotropic met-
ric mapped space is computed with Eq. (26). If the
longest edge is found to be longer than the spacing
metric by a user-defined percentage, it is split. If all
edges are found to be shorter than the spacing metric
by a defined percentage then the shortest edge is col-
lapsed. No edges are modified if the edge lengths are
all within tolerance of the spacing metric. After a suc-
cessful edge split or collapse, a cloud of local elements
is examined for improved configurations with the face
and edge swapping routines.

Face and Edge Swapping

The connectivity improvement scheme employs
face and edge swapping®' in metric mapped space,
Eq. (22). The swapping algorithm maximizes a shape
function (aspect ratio). Reconnections of tetrahedra
with undesirable shape measures are investigated, and
new local tetrahedra configurations with more desir-
able shape measures are selected. Edges on boundary

thttp://ruby-lang.org/
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faces can also be swapped. The actual locations of
nodes are not modified in this module; that modifica-
tion is performed by the node smoothing and projec-
tion modules.

Node Smoothing

The locations of the nodes in the mesh are modified
to improve the overall quality (shape measure) of the
mesh elements. This smoothing method is from Fre-
itag.#S The elements are mapped with the anisotropic
metric, Eq. (22), during node smoothing, so that well-
shaped elements in mapped space yield anisotropic
elements in physical space.

If a node is connected to a poorly shaped element,
it is selected for node smoothing. The first step is
to differentiate the shape function of all incident ele-
ments with respect to the current node location. The
search direction and step size are calculated with the
nonsmooth optimization method of Freitag.*® Smart-
Laplacian smoothing is also used on the interior nodes
as in the combined approach of Freitag.*®

Boundary node smoothing is coupled to CAPRI,
which uses native CAD evaluation routines. Nodes
on the boundary are smoothed by moving the nodes
in (u,v) CAD parametric space to improve the shape
measure of adjacent tetrahedra and boundary faces. It
is much faster and more robust to evaluate points with
a (u,v) CAD parameter than to project the points to
the CAD surface in physical space.

To optimize a node in (u,v) space, the search direc-
tion in physical space is first calculated. This search
direction is simply the gradient of the shape measure
of the worst quality element adjacent to a node. The
local derivatives of the CAD model parameterization
are evaluated at the node location and the chain rule is
used to express the physical search direction in (u,v).
A line search is performed in the (u,v) search direc-
tion to optimize the boundary node location. Nodes
constrained to CAD edge entities are optimized with
a line search for the single (¢) parameter.

Node Projection

Inserted boundary nodes may not be located on the
surface geometry of the model to be simulated because
they were linearly inserted at the midpoints of exist-
ing edges. A CAD model is employed to describe the
actual model surface. To regain the surface fidelity
of the mesh, the newly inserted boundary nodes are
projected to the model surface with CAPRI. The pro-
jection of these new nodes to their location on the
CAD surface can result in inverted, invalid tetrahedral
elements, especially for anisotropic elements or highly
curved geometries.

The grid smoothing and swapping algorithms are
employed to facilitate boundary projection without
generating invalid elements. As the nodes are pro-
jected, the neighboring tetrahedra are tested for va-
lidity. If negative volume tetrahedra result from the

projection, the projection displacement of the bound-
ary nodes is iteratively reduced until the neighboring
tetrahedra are valid. Then the nodes in the neighbor-
hood of the projected node are smoothed to improve
a quality measure of the adjacent tetrahedra. Connec-
tivity is also swapped. The boundary points are then
moved into the fully projected position in a number of
iterative cycles.

It is anticipated that grid smoothing in the neigh-
borhood of projected nodes may not adequately regain
surface fidelity of highly anisotropic 3D meshes. A
grid-movement scheme may be required as in Ref. 19.
Another possibility is a 3D version of mesh restructur-
ing as in Ref. 47.

Adaptation Module Development

These three adaptation modules were originally de-
veloped independently to facilitate a quick initial im-
plementation and to investigate the strengths and
weaknesses of each technique. They were then refac-
tored or rewritten to merge the abilities of these sep-
arate modules into a common framework that allowed
for more flexible modifications of grids (e.g., point in-
sertion, point removal, and anisotropic elements).‘l’6
This framework has also been extended to generate
advancing layer viscous grids.

Viscous Grid Generation

Advancing layer® %3235 mesh generation is used by

many researchers to generate strongly anisotropic re-
gions in unstructured meshes for viscous fluid simula-
tions. This technique has been implemented in the cur-
rent adaptation framework to generate initial viscous
meshes for this study. The advancing layer capabil-
ity enables research into anisotropic mesh generation.
This research includes a mixed element capability, but
only tetrahedral meshes were analyzed in this study.

Mixed elements can be generated with extruded
prisms that can be optionally subdivided into tetra-
hedra. Growth curves can be terminated by a GridEx
framework spacing metric, a maximum number of lay-
ers, or maximum growth curve length. Transition
elements (pyramids or tetrahedra) are created to span
layers which have growth curves terminated at differ-
ent levels.

Multiple normals (blend elements) are optionally
created at surface discontinuities (e.g., sharp corners
such as a wing trailing edge). Blends can be extruded
to create a zero thickness layer for wake structures.
The incremental length, growth rate, and maximum
length of each normal growth curve can be set inde-
pendently or described with user-defined polynomial
function. Growth curves may be constrained to CAD
face or edge entities. These constrained curves create
new boundary face and edge elements in the path of
the layer as it advances.

Once all the growth curves have been terminated,
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Fig. 2 Initial ONERA M6 mesh.

isotropic surface and volume meshes are created with
the GridEx framework and merged with the viscous
layers. The isotropic volume mesh is bounded by
the final layer, rebuilt faces, and any exposed original
faces of the model. The final layer may not exactly
match the inviscid spacing specification, so the FE-
LISA mesher was modified to increase robustness when
the initial boundary grid of the volume is of poor qual-
ity. The gain in robustness was a result of lowering
the minimum quality requirement of the initial tessel-
lation in order to increase the likelihood of recovering
the boundary faces. Subsequent smoothing, as a part
of normal FELISA operation, is sufficient to recover
good grid quality.

Results

Adaptation results are shown for a wing configura-
tion. Error prediction results are shown for a cylinder
and an extruded airfoil configurations. The wing is
simulated with inviscid transonic flow conditions, the
cylinder is simulated with low Reynolds number lam-
inar flow, and the extruded airfoil configuration is
simulated with turbulent subsonic flow.

Inviscid Transonic ONERA M6 Adaptation

An Office National d’Etudes et de Recherches
Aérospatiales (ONERA) M6 wing configuration is sim-
ulated at 0.84 Mach and an angle of attack of 3 deg.
This case is presented as a continuation of a study in
Ref. 17. A uniform refinement study of the configura-
tion was performed for comparison with adjoint drag
adaptation schemes. The geometry for this model is
represented with the CAPRI native kernel. The native
part was created from a IGES surface definition. The
initial mesh for the wing adaptation and error pre-
diction study is generated with the FELISA mesher
connected to geometry by CAPRI and the GridEx

0.035

Uniform Refinement —e—
Isotropic Adapted Edge Correction —&—
Anisotropic Adapted Element Correction —<—
0.030 - Extrapolated --------
g 0.025
a
©
E 0.020
(]
&
[}
e}
O 0.015
0.010
TUser—Specified Tolerance = 0.0019
0.005 bl el el
10000 100000 100000(¢
Number of Nodes
Fig. 3 Adapted ONERA M6 drag.
framework.

The initial mesh contains 5227 nodes and is shown
in Fig. 2. The initial spacing function for this mesh is
specified manually and is intended to be representative
of an automated curvature or maximum chord-height
specification. The mesh has extremely coarse spacing,
especially at the trailing edge, and is intended to re-
solve the surface curvature of the leading edge and the
wingtip and not any particular flow features.

Figure 3 shows drag and estimates of drag as a
function of mesh size for the ONERA M6 wing. A re-
finement study of the mesh was performed to describe
the convergence of drag calculated with uniformly re-
fined grids (represented by circles in Fig. 3). These
meshes have the same spacing function as the original
mesh globally modified with a scalar to uniformly re-
duce the element spacing. The extrapolated value for
drag (dashed line) was calculated with second-order
Richardson extrapolation of the two finest embedded
grids.!” These grids were generated with the batch
version of GridEx.

The uniformly refined grid drag values are compared
to adjoint (output) adaptation from previous work'?
and the current approach, represented in Fig. 3 by
squares and diamonds respectively. The user specified
error tolerance for final adapted drag error is +0.0019
for both adaptive schemes. Drag values within this tol-
erance are within the borders of the dot-dash line. The
previous scheme only allowed isotropic refinement, and
an edge-based interpolation scheme was employed to
prolongate the solution to the embedded mesh for er-
ror prediction. The current anisotropic refinement and
coarsening scheme uses an improved element-based
interpolation. The numbers next to the diamond sym-
bols denote the maximum allowed metric length ratio
(ha/hy and hg/hy), which is controlled by limiting the
Eigenvalue ratios of the adaptation metric. A limit of
one yields an isotropic metric.
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face Mach contours.
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Fig. 4. The final adapted upper wing surface mesh for
the previous isotropic adaptation scheme is shown in
Fig. 5, and the current anisotropic adaptation scheme
is shown in Fig. 6. The integrated smoothing and
swapping yields a smoother mesh size distribution.
The incidence of high-degree nodes is lower for the

based error correction provides the best

approximation for the extrapolated value on the initial
mesh. This improvement over the edge-based method

is expected due to the smoother interpolant produced
by the element-based interpolation. The anisotropic
refinement and coarsening adaptation scheme yields
a smaller mesh than the isotropic refinement-only

only
sh

Both methods have a high degree of me
The Mach contours on the final anisotropic adapted
upper wing surface are shown in Fig. 7. A lambda

anisotropic scheme than the isotropic refinement
shock structure is visible in these Mach contours.

scheme.
clustering at leading and trailing edges.

The current

size may also be reduced further with
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jecting nodes to geometry with high curvatures. This
difficulty is exacerbated by highly anisotropic elements

The

near these bounding geometries with high curvature.

anisotropic mesh has larger elements in the neighbor-
hood of the lambda shock structure than the isotropic

The initial upper wing surface mesh is shown in
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Fig. 8 Initial cylinder mesh with the near symme-
try plane removed.

Projected Embedded Grid

0.001

Remaing Drag Error After Correction

Unprojected Embedded Grid

0.0001 1 1 1 1 1 1
0.343 0.424 0.529 0.665 0.817 1.000

h

Fig. 9 Remaining drag error after correction on
the embedded grid.

refinement-only scheme. The shock location may have
a larger impact on drag calculation than shock resolu-
tion. The grid enrichment upstream of the shocks near
the stagnation location and sonic acceleration region
has a larger impact on shock location and therefore
drag than grid resolution at the shock.

Laminar Cylinder

A 3D cylinder is simulated in laminar flow at 0.38
Mach and a Reynolds number of 10. The cylinder is
capped at each end by a symmetry plane and has a
height of half its diameter. The outer boundary for
the problem is placed at a radius of 40 diameters.
The geometry for this case is generated from Para-
solid cylinder primitives and is accessed with CAPRI.
A suite of isotropic, uniformly refined FELISA meshes

were created for this case with the GridEx applica-
tion. The initial grid for the configuration is shown in
Fig. 8 with the near symmetry plane removed. The
skin friction component of drag is computed with the
flux-based skin friction calculation of Refs. 14 and 15.

Figure 9 depicts the remaining error in the corrected
functional. This remaining error is the difference be-
tween the corrected drag value and the converged so-
lution on the embedded grid. A characteristic length
h for each grid is estimated as the cube root of the
number of nodes in the mesh. The characteristic
lengths are normalized by the characteristic length
of the coarsest mesh v/31343. The error corrections
were performed on projected (circles) and unprojected
(squares) embedded grids. The converged solutions
were calculated on projected embedded grids.

The corrected drag value computed on the unpro-
jected grid better predicts the drag value calculated on
the embedded grid for coarse meshes. The embedded
drag calculation on the finest mesh is better predicted
by the projected grid error prediction. The projected
grid error correction appears to converge with a more
consistent slope than the unprojected grid error cor-
rection. The slope for the projected mesh steepens for
each consecutive mesh after the coarsest mesh, indi-
cating an increasing rate of convergence. References
13-15 employed projected embedded grids to com-
pute error-corrected functionals. Projecting embed-
ded meshes has been avoided in 3D due to increased
cost, complexity, and robustness issues. The embed-
ded mesh size increases by factors of eight in 3D.

Turbulent Extruded Airfoil

The initial mesh for the the extruded airfoil configu-
ration is shown with the near symmetry plane removed
in Fig. 10(a). The airfoil is a NACA 0012 extruded
0.1 chord lengths. Viscous grids were generated from
a Parasolid part with the GridEx framework and the
adaptation framework with the advancing layer vis-
cous extension. The isotropic portion of the mesh was
completed with the FELISA mesher. To create this
mesh, the geometry was split along the airfoil center-
line. Half of the mesh is created (including the wake
structure) and then mirrored to complete the mesh.

The extruded NACA 0012 configuration is simulated
at 0.70 Mach, 0 deg angle of attack, and 9 million
Reynolds number. Mach contours are presented for
the far symmetry plane in Fig. 10(b). The contour
lines range from 0.0 to 0.95 Mach and are shown in
0.05 Mach increments. The flow is subcritical, and
airflow is from lower right to upper left. The wake and
the extent of the boundary layer are clearly visible.

Close-up views of the symmetry plane grid and the
drag adaptation intensity, Eq. (17), are shown for the
initial mesh in Fig. 11. Airflow is from left to right.
The dark gray areas in Fig. 11(b) are regions with a
large adaptation intensity, which indicates a need for
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plane removed.

b) Initial NACA 0012 Mach contours on symmetry
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Fig. 10 Initial NACA 0012.

increased grid resolution in those regions. White areas
in Fig. 11(b) are sufficiently resolved (possibly over-
resolved) and have an adaptation intensity less than
or equal to unity. The area of large adaptation in-
tensity (dark gray) at the edge of the boundary layer
(Fig. 11(b)) appears to correspond to high curvature
of the Mach contour lines in Fig. 10(b).

The mechanics to automatically adapt 3D grids with
highly anisotropic regions is still under development.
Therefore, the advancing layer structure near the air-
foil and in the wake can currently only be affected by
indirect, manual modification to the advancing normal
initial heights and growth rates. Improved mesh adap-

LAXOAANRKKRT

b) Drag adaptation intensity (dark areas have large
intensities).

Fig. 11 Initial NACA 0012 close-up.

tation mechanics would allow a more efficient alloca-
tion of grid spacing to satisfy the adaptation intensity.

A close-up view of these high intensity areas is avail-
able in Fig. 11. Resolving the wake and the outer
edge of the boundary layer is clearly important to drag
calculation, although these areas are often neglected
when constructing unstructured meshes for drag pre-
diction investigations.

The symmetry plane grid and the drag adaptation
intensity, Eq. (17), are shown for the initial mesh in
Fig. 12. The dark gray areas in Fig. 12(b) are regions
with a large adaptation intensity, which indicates a
need for increased grid resolution in those regions. The
adaptation intensity is employed to manually modify
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a) Symmetry plane mesh.

b) Drag adaptation intensity (dark areas have large

b) Drag adaptation intensity (dark areas have large
intensities).

intensities).

Fig. 12 Initial NACA 0012 (211733 nodes). Fig. 13 Manually adapted NACA 0012 (369417
nodes).

the inviscid spacing specification of the grid. The dark

areas upstream, above, and at the tail of the airfoil

were targeted for adaptation. A new grid and resulting
adaptation parameter are shown in Fig. 13. Figure totic convergence. The drag and the drag adjoint
13(a) depicts the enriched grid areas upstream, above, solution are computed with the flux-based skin fric-
and at the tail of the airfoil. The adaptation intensity tion. Drag on the embedded grid, which is part of
is reduced from dark gray to light gray or white in the the estimated corrected drag value, is computed with
areas of grid enrichment, as shown in Fig. 13(b). element-based skin friction. The flux-based skin fric-
Drag and corrected drag estimates are shown as  tion calculation did not give reasonable values for the
a function of grid size in Fig. 14. The computed interpolated solution on the embedded grid. These
drag values are shown with open symbols and the  unpredictable results may be due to high frequency
corrected drag estimates are depicted with closed sym- noise in the embedded solution. The turbulence model
bols. Second-order Richardson extrapolation is per-  quantity v is floored at zero on the embedded mesh to
formed for the two finest mesh drag values. The  prevent negative turbulent viscosity components.

Richardson extrapolation values is denoted approxi-
mate because the drag value has not reached asymp-
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Fig. 14 NACA 0012 drag convergence.

Conclusion

The initial three-dimensional implementation of an
adjoint-based error correction method is demonstrated
for compressible Euler, laminar, and turbulent Navier-
Stokes flow. With a given flow and adjoint solu-
tion, the error correction for a functional is described.
The treatment of high aspect-ratio meshes and strong
boundary conditions are discussed.

The spatial convergence for drag and error corrected
drag is shown for a wing in transonic inviscid flow. A
refinement and coarsening scheme was combined with
an anisotropic adaptation framework to calculate ac-
curate functionals on smaller meshes than refinement
only meshes.

The drag computed by this error correction method
was shown to be as accurate as direct flow calculations
using uniformly refined grids for a cylinder in laminar
flow, and an extruded airfoil in subcritical turbulent
flow. The adaptation intensity is shown for a turbu-
lent extruded airfoil configuration. Manual adaptation
and uniform refinement is performed on this airfoil
configuration. The need for continued research into
automatic, highly anisotropic mesh adaptation me-
chanics is highlighted.
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